洪清启 副教授、硕士生导师

个人介绍:

洪清启,计算机博士 (Ph.D. in Computer Science),副教授,人工智能研究院、健康医疗大数据国家研究院导师。曾在香港城市大学COCHE研究中心任副研究员(合作导师:沈定刚教授、张元亭教授)。担任Scientific Reports编委,以及IEEE TMI, IEEE TNNLS, MICCAI等期刊或会议审稿人。已在IEEE TMI, IEEE TNNLS, IEEE TFS,  ACM MM, MICCAI等重要学术刊物及会议上发表论文70多篇,授权国家发明专利4件。主持国家自然科学基金面上项目或作为主要人员完成国家级项目5项、省部级项目3项、其他各类项目30多项。荣获福建省高层次人才、厦门市高层次人才、厦门市高层次留学人员、厦航奖教金(科研类)等奖励

有兴趣的同学请联系:hongqq@xmu.edu.cn



研究方向:

计算机视觉、数字媒体技术、人工智能、医学图像处理、计算机图形学


代表性科研项目:


国家自然科学基金面上项目,《基于CTA影像的急性冠状动脉综合征(ACS)智能诊断关键技术研究》,2025-2028,主持

虚拟现实技术与系统国家重点实验室开放课题, 《结构性心脏病智能诊断与手术规划关键技术研究》,2022-2024,主持

厦门黑镜科技有限公司委托项目 《3D物品重建技术研发和工具开发》,2022-2024,主持

国家自然科学基金委-联合基金项目-重点支持项目,《基于边云协同的区域能源互联网优化运行智能理论与关键技术》,2021-2024,参与

福建省自然科学基金面上项目,《计算机辅助冠心病诊断与手术关键技术研究》,2020-2023,主持

国家自然科学基金,《高稀疏表征在三维重建中的应用研究》,2019-2021,参与

国家自然科学基金,《基于隐式建模方法的个性化冠状动脉几何模型重建与再塑研究》,2016-2018,主持

福建省自然科学基金,《基于隐函数建模方法的个体化虚拟肝脏模型重建研究》,2015-2018,主持

国家自然科学基金,《基于图结构的消化道超声内镜图像分类算法研究》,2015-2017,参与

教育部留学回国人员科研启动基金,《基于隐式建模方法的个体化动脉血管壁重建研究》,2015-2017,主持



代表性论著:

[1]  Li, Z., Zheng, Y., Shan, D., Yang, S., Li, Q., Wang, B., Zhang, Y., Hong, Q. Q.*, Shen, D.* (2024), ScribFormer: Transformer Makes CNN Work Better for Scribble-based Medical Image Segmentation. IEEE Transactions on Medical Imaging. (中科院1)

[2]  Hong, Q. Q. *, et al. (2024), NeuFG: Neural Fuzzy Geometric Representation for 3D Reconstruction, IEEE Transactions on Fuzzy Systems. (中科院1区, In Press)

[3]  Hong, Q. Q., Lin, L., Li, Z., Li, Q., Yao, J., Wu, Q.*, Liu, K.*, Tian, J. (2024), A distance transformation deep forest framework with hybrid-feature fusion for CXR image classification, IEEE Transactions on Neural Networks and Learning Systems. (中国科学院1, In Press)

[3]  Li. Z., Li, Y., Li, Q., Wang, P., Guo, D., Lu, L., Jin, D., Hong, Q. Q.* (2024), LViT: language meets vision transformer in medical image segmentation. IEEE Transactions on Medical Imaging, vol. 43, no. 1, pp. 96-107, 2024. (中国科学院1)

[4]  Li, Z., Zheng, Y., Luo, X., Shan, D., and Hong, Q. Q.* (2023), ScribbleVC: Scribble-supervised Medical Image Segmentation with Vision-Class Embedding. In Proceedings of the 31st ACM International Conference on Multimedia (MM ’23), October 29-November 3, 2023, Ottawa, ON, Canada. (CCF A)

[5]  Qiu, Y., Li, Z., Wang, Y., Dong, P., Wu, D., Yang, X., Hong, Q. Q.*, Shen, D.* (2023), CorSegRec: A Topology-Preserving Scheme for Extracting Fully-Connected Coronary Arteries from CT Angiography, MICCAI 2023, Vancouver, Canada, October 8-12, 2023. (CCF B, Oral, 最佳论文提名)

[6]  Yang, C., Chen, J., Li, K., and Hong, Q. Q.* (2024), FFnsr: Fast and Fine Neural Surface Reconstruction, IEEE International Conference on Multimedia and Expo (ICME2024). (CCF B, Accept)

[7]  Lin, Q., Xie, W., Zhou, R., Cao, X., Chen, J., Yao, J.*, and Hong, Q. Q.* (2024), DPP-Net: Difficulty Perception-Processing Heterogeneous Network for Semi-supervised Medical Image Segmentation, IEEE International Conference on Multimedia and Expo (ICME2024). (CCF B, Accept)

[8]  Cao, X., Xie, W., Cao, X., Zhou, R., Lin, Q., Yao, J.*, and Hong, Q. Q.* (2024), ICR-Net: Semi-supervised Medical Image Segmentation Guided by Intra-sample Cross Reconstruction, IEEE International Conference on Multimedia and Expo (ICME2024). (CCF B, Accept)

[9]  Shan, D., Li, Z., Chen, W., Li, Q., Tian, J., Hong, Q. Q.* (2023), Coarse-to-Fine Covid-19 Segmentation via Vision-Language Alignment, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2023). (CCF B)

[10]  Zhou, R., Yao, J.*, Hong, Q. Q. *, Zheng, Y., Zheng, L. (2023), DAMS-Net: Dual attention and multi-scale information fusion network for 12-lead ECG classification. Methods, 2023. (中国科学院3)

[11]  Zhang, W., Su, S.*, Hong, Q. Q. *, Wang, B., Li, S. (2023), Long short-distance topology modelling of 3D point cloud segmentation with a graph convolution neural network. IET Comput. Vis., 1– 14, 2023. (CCF C)

[12]  Zhou, R., Yao, J.*, Hong, Q. Q. *, Li, X., Cao, X. (2023), Cross Attention Multi Scale CNN-Transformer Hybrid Encoder Is General Medical Image Learner. PRCV 2023. (CCF C)

[13]  Lin, Q., Yao, J.*, Hong, Q. Q. *, Cao, X., Zhou, R., Xie, W. (2023), LATrans-Unet: Improving CNN-Transformer with Location Adaptive for Medical Image Segmentation. PRCV 2023. (CCF C)

[14]  Li, Y., Zong, Y., Sun, W., Wu, Q.*, Hong, Q. Q. *(2023), A Long-Tail Relation Extraction Model Based on Dependency Path and Relation Graph Embedding, 7th APWeb-WAIM International Joint Conference on Web and Big Data, Oct 06, 2023 - Oct 08, 2023. (CCF C)

[15]  Cao, X., Yao, J.*, Hong, Q. Q., Zhou, R. (2023), MEA-TransUNet: A Multiple External Attention Network for Multi-Organ Segmentation. ICCAN 2023. (CCF C)

[16]  Li, X., Song, S., Yao, J.*, Zhang, H., Zhou, Z., and Hong, Q. Q., Efficient Collision Detection using Hybrid Medial Axis Transform and BVH for Rigid Body Simulation, Graphical Models, 2023. (CCF B)

[17]  Xu, F.#, Lin, L.#, Li, Z., Hong, Q. Q. * , Liu, K.*, Li, Q., Zheng, Y., Tian, J. (2022), MRDFF: A deep forest based framework for CT whole heart segmentation, Methods, 2022. (中国科学院3)

[18]  Li, Z.#, Li, D.#, Wang, W., Hong, Q. Q*, Li, Q., Tian, J. (2022), TFCNs: A CNN-Transformer Hybrid Network for Medical Image Segmentation, The 31st International Conference on Artificial Neural Networks (ICANN2022). (CCF C)

[19]  Liu, K., Zhan, P., Liang, Y., Zhang, Y., Guo, H., Yao, J., Wu, Q.*, Hong, Q. Q. * (2022). The design of error-correcting output codes algorithm for the open-set recognition. Applied Intelligence, 52, pp. 7843–7869, 2022. (中国科学院2)

[20]  Hong, Q., Lin, L., Li, Q., Jiang, Z., Fang, J., Wang, B., Liu, K. & Huang, C. (2021). A direct slicing technique for the 3D printing of implicitly represented medical models. Computers in Biology and Medicine, 135, 104534. (中国科学院2)

[21]  Fei Xu#, Lingli Lin#, Dihan Li, Qingqi Hong*, Kunhong Liu*,Qingqiang Wu, Qingde Li, Yinhuan Zheng, Jie Tian (2021). A Multi-Resolution Deep Forest Framework with Hybrid Feature Fusion for CT Whole Heart Segmentation, IEEE BIBM 2021. (CCF B)

[22]  Xiang Yu, Jian Wang, Qingqi Hong*, Raja Teku, Shui-Hua Wang*, Yudong Zhang* (2022). Transfer learning for medical images analyses: A survey, Neurocomputing. (中国科学院2)

[23]  Liu, K., Ye, X., Guo, H., Wu, Q.*, Hong, Q. Q.. The design of soft recoding-based strategies for improving error-correcting output codes. Applied Intelligence, 52, pp. 8856–8873, 2022. (中国科学院2)

[24]  Hong, Q., Ding, Y., Lin, J., et al. Image-Based Automatic Watermeter Reading under Challenging Environments. Sensors, 2021, 21(2): 434. (SCI)

[25]  Gao, J., Liu, K., Wang, B., Wang, D., & Hong, Q. (2021). An improved deep forest for alleviating the data imbalance problem. Soft Computing, 25(3), 2085-2101. (CCF C)

[26]  Hong, Q., Li, Q., Wang, B., Tian, J., Xu, F., Liu, K., & Cheng, X. (2020). High-quality vascular modeling and modification with implicit extrusion surfaces for blood flow computations. Computer Methods and Programs in Biomedicine, 196, 105598. (中国科学院2)

[27]  Zhang, W., Su, S., Wang, B., Hong, Q., & Sun, L. (2020). Local k-NNs pattern in Omni-Direction graph convolution neural network for 3D point clouds. Neurocomputing, 413, 487-498. (中国科学院2)

[28]  Huang, C., Lan, Y., Xu, G., Zhai, X., Wu, J., Lin, F., Zeng, N., Hong, Q.,…, & Zhang, G. (2021). A deep segmentation network of multi-scale feature fusion based on attention mechanism for IVOCT lumen contour. IEEE/ACM Transactions on computational biology and bioinformatics, 18(1), 62-69. (CCF B)

[29]  Sun, M., Liu, K., Wu, Q., Hong, Q., Wang, B., & Zhang, H. (2019). A novel ECOC algorithm for multiclass microarray data classification based on data complexity analysis. Pattern Recognition, 90, 346-362. (中国科学院1)

[30]  Wu, Q., Kuang, Y., Hong, Q., & She, Y. (2019). Frontier knowledge discovery and visualization in cancer field based on KOS and LDA. Scientometrics, 118(3), 979-1010. (中国科学院2)

[31]  Hong Q, Li Q, Wang B, Liu K*, Qi Q, 2019. High precision implicit modeling for patient-specific coronary arteries, IEEE access. 7: 72020-72029. (中国科学院3)

[32]  Hong, Q. Q., Q. Li, B. Wang, K. Liu, F. Lin, J. Lin, and et al. Accurate geometry modeling of vasculatures using implicit fitting with 2d radial basis functions. Computer Aided Geometric Design, 62:206216, 2018. (CCF B)

[33]  Hong, Q. Q., Yan Li, Q. Li, B. Wang, J. Yao, Q. Wu, Y. She, An implicit skeleton-based method for the geometry reconstruction of vasculatures, The Visual Computer. Vol. 32, Issue 10, pp. 12511262, 2016. (SCI, CCF C)

[34]  Hong, Q. Q., Wang, B., Li, Q., Li, Y. and Wu, Q., GPU Accelerating Technique for Rendering Implicitly Represented Vasculatures, Bio-Medical Materials and Engineering, vol. 14, no 1, pp. 1351-1357, 2014. (SCI)

[35]  Zou, Q., Li, J., Hong, Q. Q.*, Lin, Z., Wu, Y., Shi, H., and Ju, Y., Prediction of microRNA-disease associations based on social network analysis methods, BioMed research international, vol. 2015, 2015. (SCI)

[36]  Wang, B., Ge, Q., Hong, Q. Q.*, Li, Y., Liu, K., and Jiang, Z., Vascular Model Editing for 3D Printing Based on Implicit Functions, In proceedings of 14th Chinese Conference on Image and Graphics Technologies, pp. 150-160, 2019.

[37]  Lu, S., Chen, H., Zhou, X., Wang, B., Wang, H., and Hong, Q. Q., Graph-Based Collaborative Filtering with MLP, Mathematical Problems in Engineering, vol. 2018, 2018. (SCI)

[38]  Liu, K.-H., Ng, V. T. Y., Liong, S.-T., and Hong, Q. Q., Microarray Data Classification Based on Computational Verb, IEEE Access, vol. 7, pp. 103310-103324, 2019. (中国科学院3)

[39]  Li, Q., Hong, Q. Q., Qi, Q., Ma, X., Han, X., and Tian, J., Towards additive manufacturing oriented geometric modeling using implicit functions, Visual Computing for Industry, Biomedicine, and Art, vol. 1, no. 1, pp. 1-16, 2018.

[40]  Wu, Q., Zhang, C., Hong, Q. Q., and Chen, L., Topic evolution based on LDA and HMM and its application in stem cell research, Journal of Information Science, vol. 40, no. 5, pp. 611-620, 2014. (中国科学院3)

[41]  Quan, Q., Qingde, L., and Hong, Q. Q., Skeleton marching: A high-performance parallel vascular geometry reconstruction technique, 2018 24th International Conference on Automation and Computing (ICAC), 2018, pp. 1-6.

[42]  Han, B., Zhang, Z., Xu, C., Wang, B., Hu, G., Bai, L., Hong, Q. Q., and Hancock, E. R., Deep face model compression using entropy-based filter selection, In proceedings of International Conference on Image Analysis and Processing, pp. 127-136, 2017.

[43]  郑银环, 王备战, 王嘉珺, 陈凌宇, 洪清启, 深度卷积神经网络应用于人脸特征点检测研究, 计算机工程与应用, (4): 173-178, 2019.

[44]  Li, H., Zhao, J., Lin, D., Su, J., Wu, Q., and Hong, Q. Q.*, The Research and Application of Reservoir Identification Model Based on Smap-ED, International Journal of Multimedia and Ubiquitous Engineering, vol. 10, no. 12, pp. 255-264, 2015.

[45]  Hong, Q. Q. *, A skeleton-based technique for modeling implicit surfaces, In proceedings of 6th International Congress on Image and Signal Processing, pp. 686-691, Hangzhou, China, December, 2013.

[46]  Hong, Q. Q. and Wang, B., Segmentation of vessel images using a localized hybrid level-set method, In proceedings of 6th International Congress on Image and Signal Processing, pp. 631 – 635, Hangzhou, China, December, 2013.

[47]  Hong, Q. Q.*, Chen, L., Wang, B., and Wu, Q., The Extraction of Vascular Axis Based on Signed Distance Function, In proceedings of 5th International Conference on Graphic and Image Processing, Hong Kong, October, 25-27, 2013.

[48]  Hong, Q. Q.*, Li, Q., and Tian, J., Local Hybrid Level-set Method for MRA Image Segmentation, In proceedings of 10th IEEE International Conference on Computer and Information Technology, pp. 1397 - 1402, Braford, UK, June, 2010.

[49]  Hong, Q. Q.*, Li, Q., and Tian, J., Virtual Angioscopy based on implicit vasculatures, Lecture Note in Computer Science (LNCS), vol. 6785, pp. 592-603, 2011.

[50]  Hong, Q. Q.*, Li, Q., and Tian, J., Implicit reconstruction of vasculatures using bivariate piecewise algebraic splines, IEEE Transactions on Medical Imaging, vol. 31, no. 3, pp. 543-553, 2012. (中国科学院1)

厦门大学 厦门大学信息科学学院 厦门大学软件工程系 厦门大学信息科学系